
MyID MFA and PSM
Version 5.1

MyID Authentication Server Developers
Guide

Document reference: IMP2062-5.1.0 May 2025

Lutterworth Hall, St Mary's Road, Lutterworth, Leicestershire, LE17 4PS, UK
www.intercede.com | info@intercede.com | @intercedemyid | +44 (0)1455 558111

MyID Authentication Server Developers Guide Page 2 of 56

Copyright
© 2001-2025 Intercede Limited. All rights reserved.

Information in this document is subject to change without notice. The software described in
this document is furnished exclusively under a restricted license or non-disclosure
agreement. Copies of software supplied by Intercede Limited may not be used resold or
disclosed to third parties or used for any commercial purpose without written authorization
from Intercede Limited and will perpetually remain the property of Intercede Limited. They
may not be transferred to any computer without both a service contract for the use of the
software on that computer being in existence and written authorization from Intercede
Limited.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or any means electronic or mechanical, including photocopying and recording for
any purpose other than the purchaser's personal use without the written permission of
Intercede Limited.

Whilst Intercede Limited has made every effort in the preparation of this manual to ensure the
accuracy of the information, the information contained in this manual is delivered without
warranty, either express or implied. Intercede Limited will not be held liable for any damages
caused, or alleged to be caused, either directly or indirectly by this manual.

Licenses and Trademarks
The Intercede® and MyID® word marks and the MyID® logo are registered trademarks of
Intercede in the UK, US and other countries.

Microsoft and Windows are registered trademarks of Microsoft Corporation. Other brands
and their products are trademarks or registered trademarks of their respective holders and
should be noted as such. All other trademarks acknowledged.

MyID Authentication Server Developers Guide Page 3 of 56

Conventions used in this document
• Lists:

• Numbered lists are used to show the steps involved in completing a task when the
order is important.

• Bulleted lists are used when the order is unimportant or to show alternatives.

• Bold is used for menu items and for labels.

For example:

• Record a valid email address in ‘From’ email address.

• Select Save from the File menu.

• Italic is used for emphasis:

For example:

• Copy the file before starting the installation.

• Do not remove the files before you have backed them up.

• Bold and italic hyperlinks are used to identify the titles of other documents.
For example: "See the Release Notes for further information."
Unless otherwise explicitly stated, all referenced documentation is available on the
product installation media.

• A fixed width font is used where the identification of spaces is important, including
filenames, example SQL queries and any entries made directly into configuration files or
the database.

• Notes are used to provide further information, including any prerequisites or
configuration additional to the standard specifications.

For example:

Note: This issue only occurs if updating from a previous version.

• Warnings are used to indicate where failure to follow a particular instruction may result in
either loss of data or the need to manually configure elements of the system.

For example:

Warning: You must take a backup of your database before making any changes to it.

MyID Authentication Server Developers Guide Page 4 of 56

Contents

MyID Authentication Server Developers Guide 1
Copyright 2
Conventions used in this document 3
Contents 4
1 Introduction 7

1.1 Guidance 7
2 Web services communication 8

2.1 Authentication and transaction verification 9
2.1.1 AuthenticateUser 9
2.1.2 VerifyTransaction 10
2.1.3 Return codes 10

2.2 Challenge Grid generation 11
2.2.1 accountname 11
2.2.2 format 12
2.2.3 resolution 12
2.2.4 background 13

2.3 Phrase Challenge generation 14
2.3.1 accountname 14

2.4 One Time Code Challenge triggering 15
2.5 Identity Provider 15

3 Web Services API 16
3.1 Authentication to the WSAPI 17
3.2 WSAPI function list 18
3.3 WSAPI function details 21

3.3.1 Function: AddFidoCredential 21
3.3.2 Function: AuthenticateUser 21
3.3.3 Function: ChangeADpassword 21
3.3.4 Function: CheckPasswordAgainstPolicy 22
3.3.5 Function: CreateRealm 22
3.3.6 Function: CreateUser 22
3.3.7 Function: CreateUserExternal 23
3.3.8 Function: DeleteRealm 24
3.3.9 Function: DeleteUser 24
3.3.10 Function: DisableEmergencyOverride 24
3.3.11 Function: DisablePinGrid 24
3.3.12 Function: DisablePinPass 24
3.3.13 Function: DisablePinPhrase 25
3.3.14 Function: DisablePush 25
3.3.15 Function: DomainExists 25
3.3.16 Function: EnableEmergencyOverride 25
3.3.17 Function: EnableFidoCredential 26
3.3.18 Function: EnablePinGrid 26
3.3.19 Function: EnablePinPass 26

MyID Authentication Server Developers Guide Page 5 of 56

3.3.20 Function: EnablePinPhrase 26
3.3.21 Function: EnablePush 26
3.3.22 Function: GenerateNewUserSeed 26
3.3.23 Function: GetAuthlogicsUsers 27
3.3.24 Function: GetPasswordPolicySettings 27
3.3.25 Function: GetDomains 27
3.3.26 Function: GetFullProvisionedUsers 28
3.3.27 Function: GetOathUrl 28
3.3.28 Function: GetRealms 28
3.3.29 Function: GetRealmsAt 28
3.3.30 Function: GetRealmsInfo 29
3.3.31 Function: GetSecurityKey 29
3.3.32 Function: GetServerVersion 29
3.3.33 Function: GetMinimumClientVersion 29
3.3.34 Function: GetSettingsProperty 29
3.3.35 Function: GetUserProperty 30
3.3.36 Function: IsRealmEmpty 32
3.3.37 Function: PasswordHashExists 32
3.3.38 Function: PinGridChangeMIP 32
3.3.39 Function: PinGridGenerateMIP 33
3.3.40 Function: PinGridProvision 33
3.3.41 Function: PinPassChangePin 34
3.3.42 Function: PinPassGeneratePIN 34
3.3.43 Function: PinPassProvision 34
3.3.44 Function: PinPhraseAddQuestion 34
3.3.45 Function: PinPhraseEditQuestion 35
3.3.46 Function: PinPhraseGenerateCodeword 35
3.3.47 Function: PinPhraseProvision 35
3.3.48 Function: PinPhraseRemoveQuestion 36
3.3.49 Function: RealmExists 36
3.3.50 Function: RemoveFidoCredential 36
3.3.51 Function: RenameRealm 36
3.3.52 Function: RenameUser 37
3.3.53 Function: SendHTMLPinGridLetter 37
3.3.54 Function: SendHTMLPinPassLetter 37
3.3.55 Function: SendHTMLPinPhraseLetter 38
3.3.56 Function: SendHTMLPushLetter 38
3.3.57 Function: SendRealtimeToken 38
3.3.58 Function: SendRealtimeTokenbyProduct 39
3.3.59 Function: SendToken 39
3.3.60 Function: SetADpassword 39
3.3.61 Function: SetSettingsProperty 40
3.3.62 Function: SetUserProperty 41
3.3.63 Function: SyncDevice 42
3.3.64 Function: TokenHardwareAdd 42

MyID Authentication Server Developers Guide Page 6 of 56

3.3.65 Function: TokenHardwareEnabled 42
3.3.66 Function: TokenHardwareRemove 42
3.3.67 Function: UpdateFidoCredential 43
3.3.68 Function: UpdateLicenceFile 43
3.3.69 Function: UpdateLicenceKey 43
3.3.70 Function: ValidateAdPassword 43
3.3.71 Function: VerifyEmergencyAccess 43
3.3.72 Function: VerifyTransaction 44
3.3.73 Function: YubiKeyOtpChangePin 44
3.3.74 Function: YubiKeyOtpProvision 45

3.4 Data types 46
3.4.1 FidoCredential 46

3.5 Example: programmatically creating a user account 47
3.5.1 Process flow 47
3.5.2 Explanation 48

3.6 Using the Web Services API with Visual Studio 49
3.6.1 AuthlogicsApiClient 49
3.6.2 Authentication 50
3.6.3 Example 50

3.7 Web Service call changes in version 5.0 from 4.2.1 50
4 Advanced configuration 51

4.1 Specifying Active Directory Domain Controllers 52
4.1.1 Specifying Global Catalog Servers 52
4.1.2 Specifying Domain Controllers 52

4.2 Active Directory timing 52
4.2.1 Domain access timeout 53
4.2.2 Domain Controller refresh 53

4.3 Diagnostics logging 53
4.3.1 Enabling logging 53
4.3.2 Setting the logging location 53
4.3.3 Setting the retention time for rolling logs 54
4.3.4 Size limit of rolling log files 55
4.3.5 Example of rolling logs 56

4.4 Other settings 56
4.4.1 ProgramFolder 56

MyID Authentication Server Developers Guide Page 7 of 56

1 Introduction
Note:MyID MFA and MyID PSM were previously known as Authlogics products. Authlogics
is now an Intercede Group company and the products have been rebranded accordingly. The
term 'Authlogics' may still appear in certain areas of the product.

MyID Authentication Server is a multi-factor authentication system which provides:

• Token and tokenless, device and deviceless, Multi-Factor Authentication.

• Mobile Push Authentication.

• NIST 800-63B compliant Password Security Management solution.

• Self-service password reset and unlocking.

• Web Service API and RADIUS interfaces for connectivity.

• Multiple Authentication technologies.

MyID Authentication Server has been designed to work with the following directory services:

• Microsoft Active Directory (no schema extensions required).

1.1 Guidance
This developers guide provides detailed information about how to use the MyID
Authentication Server Web Services Application Programming Interface (WSAPI). You are
recommended to use this guide in conjunction with theMyID Authentication Server
Installation and Configuration Guide, which is designed to be an infrastructure document.

MyID Authentication Server Installation and Configuration Guide.pdf
MyID Authentication Server Installation and Configuration Guide.pdf

MyID Authentication Server Developers Guide Page 8 of 56

2 Web services communication
MyID Authentication Server supports authentication with a Web API using the following
protocols:

• HTTPS GET

• HTTP POST

By default, the Web Services run on TCP:14443 for SSL (with encryption). Youmust install
an SSL certificate onto the server and bind it to the IIS web site.

Both IPv4 and IPv6 are supported for communication with Web Services.

You can use the web API for managing and automating all server functions. A list of available
methods is available in section 3.3,WSAPI function details, and also through:
https://<ServerName>:14443/Services/swagger

Where <ServerName> is your server address.

This section contains details on communicating with the web service for the following
purposes:

• Processing an authentication request and verifying a transaction.

See section 2.1, Authentication and transaction verification.

• Generating a Grid challenge.

section 2.2, Challenge Grid generation

• Generating a Phrase challenge.

See section 2.3, Phrase Challenge generation.

• Generating a One Time Code challenge.

See section 2.4,One Time Code Challenge triggering.

• Authenticating with an Identity Provider.

See section 2.5, Identity Provider.

MyID Authentication Server Developers Guide Page 9 of 56

2.1 Authentication and transaction verification
You can use the following web service operations to process an authentication request and
verify a transaction:
• AuthenticateUser

• VerifyTransaction

2.1.1 AuthenticateUser
To process an authentication request through the API, supply the accountName and
passcode to the AuthenticateUser function, and it returns a status code; see section 2.1.3,
Return codes.

Example of an HTTPS GET authentication validation request using PowerShell:

$uri = 'https://<ServerName>/Services/api/AuthenticateUser'
$body = 'accountName=$AccountName&passcode=$Passcode'
$contentType = 'application/x-www-form-urlencoded'
$headers = @{Accept = 'application/json'}
$response = Invoke-WebRequest -Uri $uri -Method Post -ContentType $contentType -Body $body
$response.Content

Which returns the following:
<int>2</int>

indicating an invalid login.

Alternatively, you can request a JSON response:

$uri = 'https://<ServerName>/Services/api/AuthenticateUser'
$body = 'accountName=$AccountName&passcode=$Passcode'
$contentType = 'application/x-www-form-urlencoded'
$headers = @{Accept = 'application/json'}
$response = Invoke-WebRequest -Uri $uri -Method Post -ContentType $contentType -Body $body
-Headers $headers
$response.Content

Which returns the following:
2

MyID Authentication Server Developers Guide Page 10 of 56

2.1.2 VerifyTransaction
To verify a transaction through the API, supply the accountname, passcode and transaction-
specific data to the VerifyTransactionfunction function, and it returns a status code; see
section 2.1.3, Return codes.

Example of an HTTPS GET transaction verification request user PowerShell:

$uri = 'https://<ServerName>/Services/api/VerifyTransaction'
$body = 'accountName=$AccountName&passcode=$Passcode&transactionData=1234567890'
$contentType = 'application/x-www-form-urlencoded'
$headers = @{Accept = 'application/json'}
$response = Invoke-WebRequest -Uri $uri -Method Post -ContentType $contentType -Body $body
$response.Content

Which returns the following:
<int>2</int>

indicating an invalid transaction verification.

2.1.3 Return codes

Code Message Description
0 Access Granted. Credentials are valid.
1 Access Denied. Account name not found.
2 Access Denied. Invalid passcode.
5 Access Denied. Account expired.
7 Access Denied. Account disabled, locked out, or not

valid at this time.
8 Access Denied. Authentication not available due to a

licensing issue.
13 Access Granted. A pattern change is required.
111 Access Denied. Directory related error.

MyID Authentication Server Developers Guide Page 11 of 56

2.2 Challenge Grid generation
To integrate a Grid Deviceless challenge into a web page or application, call the GetToken
endpoint with an HTTPS GET request, specifying the type=pingrid. The GetToken endpoint
accepts the following parameters, all of which are optional, and you can combine as required:
• accountname

• type

• resolution

• format

• background

You can specify the theme of the generated image using the Global Settings in MMC.

2.2.1 accountname
The accountname parameter generates a challenge specific for that user.

To generate a blank challenge grid, call the GetToken endpoint without the accountname
parameter, or a blank accountname value. For example:
https://<ServerName>:14443/services/api/gettoken

The web service returns an image as follows, which is appropriate to show when the
accountname is not specified:

MyID Authentication Server Developers Guide Page 12 of 56

If you specify a value for the accountname parameter, numbers are placed on the Grid, or
Phrase challenge text is produced. Even if a user account does not match the name
provided, a challenge is still generated to prevent the disclosure of an actual user account.
For example:
https://<ServerName>:14443/services/api/gettoken?accountname=bogususer

2.2.2 format
The format parameter determines the graphical image type of the challenge grid, and
accepts the following options:

• PNG (the default format when this parameter is not specified)

• BMP

• JPG

• GIF

• TXT (this returns the values for a grid in plain text and does not return a graphic image)

The image is always a square 1:1 ratio.

For example:
https://<ServerName>:14443/services/api/gettoken?accountname=bobm&

format=TXT

2.2.3 resolution
The resolution parameter sets the resolution of the generated Grid image. This should
match the size of the HTML image object where the image is being displayed to prevent
browser rescaling, which may result in a fuzzy or blurred image. If you do not specify the
resolution parameter, the resolution set in the MMC is used.

For example:
https://<ServerName>:14443/services/api/gettoken?accountname=bobm&

resolution=500

Note: If you specify a resolution greater than 2500, a resolution of 2500 is used. If you specify
a resolution less than 50, the Global Settings resolution is used.

MyID Authentication Server Developers Guide Page 13 of 56

2.2.4 background
The optional background parameter sets the background color to use when a non-
transparent image type is used (that is, BMP and JPG). If you do not set the background
parameter, the resolution set in the MMC is used.

For example:
https://<ServerName>:14443/services/api/gettoken?accountname=bobm&

background=black

The background parameter accepts the following values:
• Black

• White

• Transparent

MyID Authentication Server Developers Guide Page 14 of 56

2.3 Phrase Challenge generation
To integrate a Phrase Deviceless challenge question into a web page or application, call the
GetToken endpoint with an HTTPS GET request and specify the type=pinphrase. The MyID
Authentication Server returns a challenge string.

The GetToken endpoint requires only the type and accountname parameters for Phrase.

2.3.1 accountname
The accountname parameter generates a challenge specific for that user.

To generate a blank PINphrase challenge, call the GetToken endpoint without the
accountname parameter, or with a blank accountname value; for example:
https://<ServerName>:14443/services/api/gettoken

The web service returns a blank string as follows, which is appropriate to show when the
accountname is not specified.

When you specify a value for the username parameter, a challenge string is returned. Even if
a user account does not match the name provided, a challenge string is still generated to
prevent the disclosure of an actual user account. For example:
https://<ServerName>:14443/services/api/gettoken?accountname=bobm&

type=pinphrase

MyID Authentication Server Developers Guide Page 15 of 56

2.4 One Time Code Challenge triggering
While One Time Code cannot generate a Deviceless challenge, the web service call triggers
the sending of a server-generated token that is appropriate for the user.

The GetToken endpoint requires only the type and accountname parameters for PINpass.

For example:
https://<ServerName>:14443/services/api/gettoken?accountname=bobm&

type=PINpass

2.5 Identity Provider
The Identity Provider (IdP) carries out all authentication in the MyID Authentication Server.
Without additional configuration, it supports Windows Authentication (Kerberos or NTLM)
and Mutual TLS.

In addition, you can use the MyID Management Console to configure it to use Client
Credentials.

MyID Authentication Server Developers Guide Page 16 of 56

3 Web Services API
In addition to the MyID Management Console, the MyID Authentication Server includes a
flexible Web Services Application Programming Interface (WSAPI) which allows you to carry
out user account and server configuration management from remote systems. TheWSAPI
allows for integration with your workflow, change management processes, and automatic
provisioning systems without manual intervention using the MyID Management Console.

Note: Some API functions make use of enum-based properties. These property values are
case sensitive, and fail if you use the wrong case.

This section contains:

• How to authenticate to the WSAPI.

See section 3.1, Authentication to the WSAPI.

• A list of the WSAPI functions.

See section 3.2,WSAPI function list.

• Details of the WSAPI functions.

See section 3.3,WSAPI function details.

• The data types.

See section 3.4, Data types.

• An example of how to create a user programmatically using the WSAPI.

See section 3.5, Example: programmatically creating a user account.

• Using the WSAPI with Visual Studio.

See section 3.6, Using the Web Services API with Visual Studio.

• Changes to the WSAPI in version 5.0 from 4.2.1.

See section 3.7,Web Service call changes in version 5.0 from 4.2.1.

MyID Authentication Server Developers Guide Page 17 of 56

3.1 Authentication to the WSAPI
TheWSAPI interface requires an authentication token from the IdP for certain function calls
and to access certain property values. You can perform some operations without
authentication, whereas others require authentication with an Administrator, an Operator, or
the actual user.

You must install an SSL certificate on the web server, and make all IdP andWSAPI
connections using HTTPS to secure the logon credentials to the web server.

You cannot authenticate with Windows or Basic authentication. For server-to-server
authentication, you are recommended to create a client credential. For more information on
creating a client credential, see the Creating a client credential application section in the
MyID Authentication Server Installation and Configuration Guide.
In addition to the credentials, you must provide a scope when you authenticate. The
supported scopes are:

• rest_api – Provides access to all the API methods.

• rest_api_external – Provides access to a restricted set of API methods.

MyID Authentication Server Installation and Configuration Guide.pdf

MyID Authentication Server Developers Guide Page 18 of 56

3.2 WSAPI function list
The following is a list of all available WSAPI functions:

Method Internal use
only

Available without
authentication

Available
with
external
scope

AddFidoCredential ✔
AddUserPasswordHash ✔
AuthenticateRadius ✔ ✔ ✔
AuthenticateUser ✔ ✔
AuthenticateUserAdPasswordless ✔ ✔ ✔
AuthenticateUserOidc ✔ ✔
ChangeADpassword ✔ ✔
CheckPasswordAgainstPolicy ✔ ✔
CreateRealm

CreateUser

CreateUserExternal

CreateUserPasswordReset ✔ ✔ ✔
DeleteRealm

DeleteUser

DisableEmergencyOverride

DisablePinGrid

DisablePinPass

DisablePinPhrase

DisablePush

DomainExists

EnableEmergencyOverride

EnableFidoCredential ✔
EnablePinGrid

EnablePinPass

EnablePinPhrase

EnablePush

GenerateNewUserSeed

GetAuthlogicsUsers

GetDomains

GetFullProvisionedUsers

GetGlobalSettings ✔ ✔ ✔
GetMinimumClientVersion ✔ ✔

MyID Authentication Server Developers Guide Page 19 of 56

Method Internal use
only

Available without
authentication

Available
with
external
scope

GetOathUrl ✔
GetPairKeyParameters ✔ ✔
GetPasswordPolicySettings ✔ ✔ ✔
GetRealms

GetRealmsAt

GetRealmsInfo

GetSecurityKey ✔ ✔
GetServerVersion ✔ ✔
GetSettingsProperty

GetUser ✔ ✔ ✔
GetUserProperty 1 ✔
IsRealmEmpty

PairDevice ✔ ✔
PasswordHashExists

PinGridChangeMIP ✔
PinGridGenerateMIP

PinGridProvision

PinPassChangePin ✔
PinPassGeneratePIN

PinPassProvision

PinPhraseAddQuestion

PinPhraseEditQuestion

PinPhraseGenerateCodeword

PinPhraseProvision

PinPhraseRemoveQuestion

RealmExists

RemoveFidoCredential ✔
RenameRealm

RenameUser

ResetADpassword ✔ ✔ ✔
SendHTMLPinGridLetter

SendHTMLPinPassLetter

1 Authentication is performed on an individual property basis.

MyID Authentication Server Developers Guide Page 20 of 56

Method Internal use
only

Available without
authentication

Available
with
external
scope

SendHTMLPinPhraseLetter

SendHTMLPushLetter

SendPresendToken

SendRealTimeToken ✔ ✔
SendRealTimeTokenbyProduct ✔ ✔
SendToken

SetADpassword

SetOnlineVaultAdPassword ✔ ✔
SetSettingsProperty

SetUserProperty ✔
StartPushAuthentication ✔ ✔ ✔
SyncDevice ✔
TokenHardwareAdd ✔
TokenHardwareEnabled ✔
TokenHardwareRemove ✔
UpdateFidoCredential ✔
UpdateLicenceFile

UpdateLicenceKey

ValidateAdPassword

VerifyEmergencyAccess ✔ ✔
VerifyTransaction ✔ ✔
YubiKeyOtpChangePin ✔ ✔
YubiKeyOtpProvision

MyID Authentication Server Developers Guide Page 21 of 56

3.3 WSAPI function details
This section contains a reference to the WSAPI functions.

3.3.1 Function: AddFidoCredential
The AddFidoCredential function adds a Fido credential to the user account.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name which is
resolvable in the directory.

credential FidoCredential See section 3.4,
Data types.

A representation of a
FidoCredential.

3.3.2 Function: AuthenticateUser
The AuthenticateUser function processes a logon request for a user account.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp

andyp@sample.com

A user account name which is resolvable
in the directory.

passcode string 123456 A passcode to authenticate the account.

The function returns an integer code indicating the result of the authenticate request:

0 Access Granted. Credentials are valid.
1 Access Denied. Account name not found.
2 Access Denied. Invalid passcode.
5 Access Denied. Account expired.
7 Access Denied. Account disabled, locked out, or not valid at this time.
8 Access Denied. Authentication not available due to a licensing issue.
13 Access Granted. A pattern change is required.
111 Access Denied. Directory related error.

3.3.3 Function: ChangeADpassword
The ChangeADpassword function changes the Active Directory Domain account password for
a user account. You can call this function anonymously, although you must supply the
existing password.

This function results in a password change event on the Active Directory and not a password
reset event.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name which is resolvable in
the directory.

oldADpassword string Pa55w0rd The old Active Directory password for the
user account specified in accountName.

newADpassword string P@ssWord The new Active Directory password to be
written to the Windows Domain.

MyID Authentication Server Developers Guide Page 22 of 56

3.3.4 Function: CheckPasswordAgainstPolicy
The CheckPasswordAgainstPolicy function checks a supplied password against the
configured Password Policy on the MyID Server; it does not attempt to set the supplied
password.

To configure the policy, apply a Group Policy containing the Password Policy Agent template
to the authentication server computer account. This is typically the same policy that is applied
to the Domain Controllers.

Parameter Type Value
Sample Description

accountName string AndyP A user account name in
the directory.

dnsDomain string DomainName The user's domain DNS
name.

plainTextpassword string Pa55w0rd A sample password to
test in clear text.

mode PasswordCheckMode

{Enum}

See table
below.

The mode to check the
password against.

Accepted password check modes:

0 None
1 Local Check password against local checks.
2 Shared Check if the password is a shared password with other accounts internally
3 Remote Check if the password is a breached password from breach lists

3.3.5 Function: CreateRealm
The CreateRealm function creates a Realm for containing MyID External user accounts.

Parameter Type Value Sample Description
realm string Realm01

ParentRealm01,ChildRealm01

A Realm hierarchy. This can be a
single name or comma separated
list of parents and children; it
creates the entire hierarchy.

The names should contain only
alphanumeric, dot, and
underscore characters.

3.3.6 Function: CreateUser
The CreateUser function creates an Enabled MyID user account using default values. It
does not configure the account for any authentication types.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account Domain\Realm and account
name to store in the directory.

MyID Authentication Server Developers Guide Page 23 of 56

3.3.7 Function: CreateUserExternal
The CreateUserExternal function creates an External MyID user account using default
values and allows you to update common properties during the creation.

Parameter Type Value Sample Description
realm string Realm01 The Realm in which

to create the
External user
account.

accountName string AndyP The user account
name to store in the
directory.

upn string AndyP@Realm01 A UPN logon name
for the user account.

firstName string Andy User First name.
lastName string Pearson User Last name.
mailAddress string andyp@sample.com A valid email

address for the user.
mobilePhone string 0123 456 789 Amobile phone

number for the user.
enableFido boolean TRUE Enable FIDO

authentication for
the user.

enablePush boolean TRUE Enable Push
authentication for
the user.

requireBiometricSeedInApp boolean TRUE Require the user to
provide a biometric
seed in the mobile
app.

enableOtc boolean TRUE Enable OTC
authentication for
the user.

pin string 123456789 The OTC PIN.
userMustChangePinAtNextLogon boolean TRUE Require the user to

change their OTC
PIN at the next
logon.

entraId string e17fa4f0-c066-

46d8-b040-

75a37af8e2d1

The EntraID for the
user account.

MyID Authentication Server Developers Guide Page 24 of 56

3.3.8 Function: DeleteRealm
The DeleteRealm function deletes a MyID Realm. The Realm must be empty before it can be
deleted.

Parameter Type Value Sample Description
realm string Realm01

ParentRealm01,ChildRealm01

A Realm hierarchy. This can be a
single name, or a comma
separated list of parents and
children; it attempts to delete the
last child, but fails if the realm is
not empty.

3.3.9 Function: DeleteUser
The DeleteUser function deletes a MyID user account from the directory, including all its
settings and attributes. When using Active Directory, it does not delete the actual Active
Directory user account; only the MyID metadata is removed off of the account.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name that is resolvable in the
directory.

3.3.10 Function: DisableEmergencyOverride
The DisableEmergencyOverride function disables the Emergency Override setting on a
user account. If Emergency Override is not enabled on the account, this function has no
effect.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name that is resolvable in the
directory.

3.3.11 Function: DisablePinGrid
The DisablePinGrid function disables the use of a Grid pattern on a user account. If Grid is
not enabled on the account, this function has no effect.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name that is resolvable in the
directory.

3.3.12 Function: DisablePinPass
The DisablePinPass function disables the use of PINpass on a user account. If PINpass is
not enabled on the account, this function has no effect.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name that is resolvable in the
directory.

MyID Authentication Server Developers Guide Page 25 of 56

3.3.13 Function: DisablePinPhrase
The DisablePinPhrase function disables the use of PINphrase on a user account. If
PINphrase is not enabled on the account, this function has no effect.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name that is resolvable in the
directory.

3.3.14 Function: DisablePush
The DisablePush function disables the use of Push on a user account. If Push is not enabled
on the account, this function has no effect.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name that is resolvable in the
directory.

3.3.15 Function: DomainExists
The DomainExists function checks if the specified Active Directory domain exists in the
directory.

The function returns a True or False Boolean value.

Parameter Type Value Sample Description
domain string mydomain.com An Active Directory domain or external realm

name that may or may not exist.

3.3.16 Function: EnableEmergencyOverride
The EnableEmergencyOverride function enables the Emergency Override functionality on a
user account. If UseADpassword is set to True, the EmergencyOverrideCode value is
ignored.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name that is resolvable
in the directory.

EmergencyOverride

ExpiryMethod
Enum nLogins The method used to expire the use of

Emergency Override. This can be a
combination of number of logins
(nLogins), a period of time
(TimePeriod) or both
(nLoginsorTimePeriod).

UseADpassword Boolean False Set the account to use the Active
Directory password instead of a set
code/password.

Note: This feature is available only in
Active Directory environments.

EmergencyOverride

Code
string 5ecr3t The code/password to be used for

Emergency Override.

MyID Authentication Server Developers Guide Page 26 of 56

3.3.17 Function: EnableFidoCredential
The EnableFidoCredential function enables or disables a Fido credential for a user
account.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name that is resolvable in
the directory.

credentialId string INbV8ZJKjb6oa The credentialId of the Fido token.

3.3.18 Function: EnablePinGrid
The EnablePinGrid function enables the use of a Grid pattern on a user account. If Grid is
enabled on the account, this function has no effect.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name that is resolvable in the
directory.

3.3.19 Function: EnablePinPass
The EnablePinPass function enables the use of PINpass on a user account. If PINpass is
enabled on the account, this function has no effect.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name that is resolvable in the
directory.

3.3.20 Function: EnablePinPhrase
The EnablePinPhrase function enables the use of PINphrase on a user account. If
PINphrase is enabled on the account, this function has no effect.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name that is resolvable in the
directory.

3.3.21 Function: EnablePush
The EnablePush function enables the use of Push on a user account. If Push is enabled on
the account, this function has no effect.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name that is resolvable in the
directory.

3.3.22 Function: GenerateNewUserSeed
The GenerateNewUserSeed function generates a new 256-bit seed on a user account. If a
seed already exists, it is replaced with the new one.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name that is resolvable in the
directory.

MyID Authentication Server Developers Guide Page 27 of 56

3.3.23 Function: GetAuthlogicsUsers
The GetAuthlogicsUsers function returns a list of MyID provisioned users for the specified
realm.

Parameter Type Value Sample Description
realm string mydomain.com An Active Directory domain or external realm

name that may or may not exist.

3.3.24 Function: GetPasswordPolicySettings
The GetPasswordPolicySettings function returns a comma separated return of all
Password Policies followed by the delimiter of a colon : and the setting value; that is, True or
False or the numeric value for the control.

Parameter Type Value Sample Description
n/a

For example:
AllowUsername:False,DisableSharedPasswordProtection:False,DisableCloudPass

wordBlacklist:False,DisableLocalPasswordBlacklist:False,DisallowMonthAndDa

y:False,DisallowSpaces:False,MaxAllowedUsernameCharacters:0,MaxLength:127,

MaxRepeatingChars:8,MaxSequentialChars:3,MaxSequentialKeyBoardChars:0,Enab

lePasswordPolicy:True,MinLength:8,MinLowerCaseChars:0,MinNumericChars:0,Mi

nSpecialChars:0,MinUnicodeChars:0,MinUpperCaseChars:0

3.3.25 Function: GetDomains
The GetDomains function retrieves a string array of Active Directory domains that exist in the
directory. This is a read-only function.

Parameter Type Value Sample Description
n/a

MyID Authentication Server Developers Guide Page 28 of 56

3.3.26 Function: GetFullProvisionedUsers
The GetFullProvisionedUsers function retrieves all users in a specified realm that have
been fully provisioned; that is, they do not require knowledge factors to be changed for a
specified MFA technology.

Parameter Type Value Sample Description
realm string Realm01 The realm to query for users.
apl Int32 256 The enum for the provisioned MFA technology.
format string UPN Specify the format of the user account.

APL Technology enumeration:

0 None
1 PinGrid
2 PinPhrase
4 PinPass
8 YubiKey OTP
16 Push
32 FIDO
256 All

Format response options:

Domain NETBIOS user name: domain\username
UPN User’s UPN: username@domain
Email User’s email address.

3.3.27 Function: GetOathUrl
The GetOathUrl function retrieves an OathAuthenticator URL for a user account.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name which is resolvable in the
directory.

3.3.28 Function: GetRealms
The GetRealms function retrieves a string array of Realms that exist in the directory. A GET
call or POST with an empty search returns all realms.

Parameter Type Value Sample Description
search string Realm01 An optional search string.

3.3.29 Function: GetRealmsAt
The GetRealmsAt function retrieves a string array of sub realms without nesting; a GET call
or POST with an empty search returns all root level realms.

Parameter Type Value Sample Description
baseRealm string Realm01 The base realm to retrieve.

MyID Authentication Server Developers Guide Page 29 of 56

3.3.30 Function: GetRealmsInfo
The GetRealmsInfo function retrieves a string array of realms. A GET call or POST with an
empty search returns all root level realms and their information.

Parameter Type Value
Sample Description

baseRealm string Realm01 The base realm to retrieve.
daysSinceCreation Int32 30 Return only the realms that have been created

more than the specified number of days ago.

3.3.31 Function: GetSecurityKey
The GetSecurityKey function retrieves a security key identified by a particular GUID.

Parameter Type Value Sample Description
aaguid string 894cedf4-a9e3… The GUID of the security key to retrieve.

3.3.32 Function: GetServerVersion
The GetServerVersion function retrieves a string displaying the installed MyID version. This
is a read-only function.

Parameter Type Value Sample Description
n/a

3.3.33 Function: GetMinimumClientVersion
The GetMinimumClientVersion function retrieves a string displaying the minimum client
version required to use this version of the Authentication Server. This is a read-only function.

Parameter Type Value Sample Description
n/a

3.3.34 Function: GetSettingsProperty
The GetSettingsProperty function retrieves the values of various global settings
properties. This is a read-only function; to set the value of a property, use the
SetSettingsProperty function.

You can query multiple values at once by specifying all the required properties in a CSV
string.

Parameter Type Value Sample Description
names string SMTPServer1,

SMTPPort1
The property names to access.

Note: Leaving this value blank returns a list of
supported property values.

Valid values for the names parameter which do not require authentication (Anonymous):
SchemaVersion, ToleranceLevel, TolerancePeriod, LockoutDuration,

LockoutThreshold, LockoutReset, SspAllowResetAdPassword,

SspUnlockMasterAccountOnPasswordReset, SspAllowUpdateMobilePhoneNumber,

SspAllowTokenDeviceChange, SspUrl, SspPasswordReset, AppLogoUrl,

AppLogoDescription, AppUseBiometrics, AppOtpCopyPaste,

MyID Authentication Server Developers Guide Page 30 of 56

AppTransactionValidation, AuthlogicsServerCertificate,

AuthlogicsIdpSigningCertificate, AuthlogicsServerTrustedRootCertificate,

ADUsernameCustomAttribute, RandomiseAdPasswordPeriod,

RandomiseAdPasswordEnforced, GUIDAdministrators, GUIDOperators,

GUIDAdministrators, GUIDServers, GUIDRadius, GUIDADPassthrough,

SMTPServer1, SMTPServer2, SMTPPort1, SMTPPort2, SMTPFromAddress,

SMTPEnableSSL, SMTPUseWindowsCredentials, SMSEnabled, SMSSendLimit,

SMSDefaultCountryCode, RealTimeTokenLifespan, AllowEmergencyOverride,

AllowTemporaryAccessCode, MaxOverrideTime, MaxOverrideUses,

PasswordVaultEnabled, RequirePrivateMobile, EmailDomains,

AccountBreachedAction, AccountSharedAction, AccountMfaDormantAction,

AccountAdDormantAction, AlertAdDormant, AlertAdPasswordExpires,

AlertAdPasswordExpiresDays, AlertBreachPassword, AlertDormantAdDays,

AlertDormantMfaDays, AlertLicenceEvents, AlertMfaAccountLockedOut,

AlertMfaDeviceChangeOnAccount, AlertMfaDormant, AlertSharedPassword,

PsmScheduleStart, PsmScheduleRepeatCycle, PsmScheduleRecur,

PinGridMatrixMinNumberOfSquares, PinGridMatrixTheme, PinGridMIPHistory,

PinGridMIPMaxAge, PinGridMIPMinLength, PinGridMIPMinAge,

PinGridMIPComplexity, PinGridMIPMaxAdjacencies, PinGridMIPMaxCellRepeats,

PinGridHASHLevel, PinGridMessagePrefix, PinGridMIPMinNumberOfQuadrants,

PinGridMatrixFontSize, PinGridMatrixColourQ1, PinGridMatrixColourQ2,

PinGridMatrixColourQ3, PinGridMatrixColourQ4, PinGridMatrixBitmapSizeDPI,

PinGridMatrixHTMLEmail, PinPhraseMinNumberOfQuestions,

PinPhraseMinAnswerLength, PinPhraseQuestions, PinPhraseMessagePrefix,

PinPhraseUseMultipleQuestionsPerLogin, PinPassMessagePrefix,

PinPassMinLength, PinPassPINMinLength, PinPassPINPosition,

PinPassPINEnforced, RADIUSFilterEnabled, ADPassthroughEnabled,

YubiKeyOtpPinMinLength, YubiKeyOtpPinEnforced, YubiKeyOtpEnabled,

YubiKeyOtpOnlineEnabled.

Valid values for the names parameter which require Admin rights:
SMTPUsername, DirectoryID

3.3.35 Function: GetUserProperty
The GetUserProperty function returns the properties for a user. This is a read-only function;
to set the value of a property, use the SetUserProperty function.

You can query multiple values at once by specifying all the required properties in a comma-
separated string.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name which is resolvable
in the directory.

Names string FirstName,LastName The property names to access.

Note: Leaving this value blank returns a
list of supported property values.

MyID Authentication Server Developers Guide Page 31 of 56

Valid values for the Names parameter that do not require authentication (Anonymous):
AccountGuid, PushThrottled, HasPushDevices, AccountName, UPN, DirectPath,

Devices, FirstName, LastName, Realm, Exists, ExistsAD, PsmOnly,

ExternalUser, Enabled, APL, AccountExpiresAD, ValidFrom, ValidTo,

PasswordExistsInVault, Description, RequireBiometrics, PinGridEnabled,

PinGridProvisioned, PinGridMIPMustChange, PinGridMIPNeverExpires,

PinGridRequire2FA, PinGridEnable2FA, PinGridDelivery, PinGridQueueType,

PinPhraseEnabled, PinPhraseProvisioned, PinPhraseAnswersMustChange,

PinPhraseRequire2FA, PinPhraseEnable2FA, PinPhraseDelivery,

PinPhraseQueueType, PinPassEnabled, PinPassProvisioned,

PinPassPINMustChange, PinPassDelivery, PinPassQueueType,

PinPassTokensPerMessage, PushEnabled, LastLogonAd, LastLogonPinGrid,

LastLogonPinPhrase, LastLogonPinPass, LastLogonYubiKeyOtp,

YubiKeyOtpEnabled, YubiKeyOtpProvisioned, YubiKeyOtpPinMustChange.

Valid values for the Names parameter that require Admin or Operator rights:
PasswordLengthAD, LockedOut, EmergencyOverrideEnabled,

PinGridMIPCreationDate, PinGridTokenLifespan, PinPhraseCodeLength,

PinPhraseTokenLifespan, PinPassTokenLifespan, PinPassPIN, YubiKeyOtpPin.

Valid values for the Names parameter that require Admin or Operator rights, or can be
accessed by the actual user:
UserCannotChangePasswordAD, PasswordNeverExpiresAD, PasswordLastSetAD,

PasswordExpiryDateAD, PasswordExpiryZone, MobilePrivate, MobileNumber,

MailAddress, LastLogin, BadLogins, PinGridMIPExpiryDate,

PinGridMIPdaysSinceLastChanged, PinGridMatrixNumberOfSquares,

PinPhraseAnswers, PinPassCodeLength, PinPassPINisADpassword, TokenIDs,

YubiKeyOtpPinIsADpassword.

The following table lists all the accepted device types for the TokenIDs property:

0 Unspecified
1 WindowsDesktop
2 WindowsStore
3 WindowsPhone
4 Android
5 AppleiOS
6 AppleMacOS
7 BlackBerry
8 YubiKey
9 OathAuthenticator
10 SecurityKey
11 SyncedPasskey

MyID Authentication Server Developers Guide Page 32 of 56

3.3.36 Function: IsRealmEmpty
The IsRealmEmpty function returns False if the specified realm contains sub realms or
users.

Parameter Type Value Sample Description
realm string Realm01 The realm to you want to check.

3.3.37 Function: PasswordHashExists
The PasswordHashExists function checks whether or not a MD4 hash password exists in
the MyID Password breach database.

This is a read-only function that returns a True or False Boolean value.

Parameter Type Value Sample Description
md4Hash string ABC1543212BCD.. The MD 4 hash of a clear text password.
dnsDomain string Authlogics.com The DNS domain name of the calling

domain.

3.3.38 Function: PinGridChangeMIP
The PinGridChangeMIP function sets a new Grid pattern on the user account.

Important: The pattern is specified in MIP comma-separated notation of grid positions and is
stored as a hash; once written, it cannot be retrieved in plain text.

Note: Any authenticated user can call this function as long as they are attempting to update
their own MIP, otherwise MyID Admin rights are required.

If an Administrator or Operator calls this function, the Pattern Complexity checks are not
performed. If the user's context initiates this call, the Pattern Complexity checks are enforced,
and users are not allowed to select non-complex patterns.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name which is resolvable
in the directory.

gridSize string 6 The X or Y size of the grid to use for the
new pattern.

6 or 8 are the only accepted values.
MIP string 23,29,35,24,30,36 A comma-separated list of numbers

denoting the positions in a grid for the
pattern.

currentMIP string 1,2,3,9,8,7

or:
ABC1243E…

Provide the current user's pattern or the
hash of the user's current pattern.

MyID Authentication Server Developers Guide Page 33 of 56

3.3.39 Function: PinGridGenerateMIP
The PinGridGenerateMIP function creates a new random pattern in MIP comma-separated
notation. You can generate either a simple or a complex pattern.

The function returns the new MIP as a string and is not written to a user account. You can use
the new MIP on a user account within the PinGridChangeMIP, PinGridProvision and
SendHTMLPinGridLetter functions.

Parameter Type Value
Sample Description

gridSize integer 6 The X or Y size of the grid to use for the new
pattern. 6 or 8 are the only accepted values.

complexPattern Boolean False To generate a complex pattern set this value to
True. For a simple pattern set it to False.

3.3.40 Function: PinGridProvision
The PinGridProvision function provisions a user account for a user with a Grid pattern. You
must do this at least once to allow Grid patterns to be used with the account. The inputs are
similar to the PinGridChangeMIP function; however, this function does more than just setting
the MIP.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name which
is resolvable in the directory.

gridSize integer 6 The X or Y size of the grid to
use for the new pattern. 6 or 8
are the only accepted values.

MIP string 23,29,35,24,30,36 A comma-separated list of
numbers denoting the
positions in a grid for the
pattern.

OverrideRestrictions Boolean False Override the pattern
complexity restriction checks
when setting the pattern. It is
not recommended to override
the built-in complexity
settings as this could lead to
lower security.

MyID Authentication Server Developers Guide Page 34 of 56

3.3.41 Function: PinPassChangePin
The PinPassChangePin function allows you to change the PINpass PIN code.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name which is resolvable in the
directory.

pin integer 12345 The new PIN code to be used for PINpass.
currentPin string 54321 The current PIN code used for PINpass. This is

used to authorize the change to the new PIN.

3.3.42 Function: PinPassGeneratePIN
The PinPassGeneratePIN function generates a random PIN which complies to the PINpass
policy.

Parameter Type Value Sample Description
n/a

3.3.43 Function: PinPassProvision
The PinPassProvision function provisions a user account for a user with PINpass. You
must do this at least once to allow PINpass to be used with the account.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name which is resolvable
in the directory.

PIN string 7651 A PIN (or password) to be used as the
knowledge component for authentication.
If no PIN is specified, a random PIN is
generated and saved to the account.

PINisADpassword Boolean False Use the Active Directory password
instead of a PIN. If this value is set to
True then the PIN value, if specified, will
not be used.

Note: This option is only available in an
Active Directory Environment.

OTPcodeLength integer 6 The length of the OTP code which will be
sent to the user. As per OATH RFC
specifications, accepted values are 6, 7
and 8 only.

3.3.44 Function: PinPhraseAddQuestion
The PinPhraseAddQuestion function adds a new question to the list of questions for which
users can provide answers.

Parameter Type Value Sample Description
question string Your favourite

color
A string containing the actual question to
add.

MyID Authentication Server Developers Guide Page 35 of 56

3.3.45 Function: PinPhraseEditQuestion
The PinPhraseEditQuestion function alters an existing question in the list of questions for
which users can provide answers.

Warning: Use this function only for minor changes, as existing answers are still matched to
the question. For brand new questions you are recommended to delete the old question and
add a new question.

Parameter Type Value Sample Description
oldQuestion string Your best colour A string containing the old actual

question.
newQuestion string Your favourite

colour
A string containing the new actual
question.

3.3.46 Function: PinPhraseGenerateCodeword
The PinPhraseGenerateCodeword function returns a random word from the PINphrase
dictionary file.

Parameter Type Value Sample Description
n/a

3.3.47 Function: PinPhraseProvision
The PinPhraseProvision function provisions a user account for a user with PINphrase. You
must do this at least once to allow PINphrase to be used with the account.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name which is resolvable in
the directory.

codeWord string England A string to be used as the answer to the first
question; the default question is "your code
word". If no answer is specified, a random
word is selected from a dictionary file and
saved to the account as the answer to the first
question.

OTPcodeLength integer 3 The number of letters from the answer are
requested from the user to create their OTP
code. Recommended values are between 3
and 5.

MyID Authentication Server Developers Guide Page 36 of 56

3.3.48 Function: PinPhraseRemoveQuestion
The PinPhraseRemoveQuestion function removes an existing question from the list of
questions for which users can provide answers. Any existing answers to the removed
question are removed from the user account only when the account is next updated. A bulk
answer delete is not triggered; however, the answer is ignored during subsequent
processing.

Parameter Type Value Sample Description
question string Your favourite

color
A string containing the actual question.

3.3.49 Function: RealmExists
The RealmExists function checks if the specified Realm exists in the directory.

The function returns a True or False Boolean value.

Parameter Type Value Sample Description
realm string realm.com

parentRealm,realm.com

A Realm hierarchy which may or may
not exist. This can be a single name or
comma separated list of parents and
children and will return true only if the
entire hierarchy exists.

3.3.50 Function: RemoveFidoCredential
The RemoveFidoCredential function removes a Fido credential from the user account.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name which is
resolvable in the directory.

credential FidoCredential See section 3.4,
Data types.

A representation of a
FidoCredential.

3.3.51 Function: RenameRealm
The RenameRealm function renames an existing Realm in the directory.

Parameter Type Value Sample Description
oldRealm string oldrealm.com

parentRealm,oldrealm.com

A Realm hierarchy. This can be a
single name or comma
separated list of parents and
children; it renames the last
child.

newRealmName string newrealm.com The new Realm name.

MyID Authentication Server Developers Guide Page 37 of 56

3.3.52 Function: RenameUser
The RenameUser function renames an existing user account in the directory. Renaming a
user account is supported only with External Users, and not with Active Directory user
accounts.

Parameter Type Value Sample Description
oldAccountName string oldname The existing user account name to be

renamed.
newAccountName string newname The new user account name.

3.3.53 Function: SendHTMLPinGridLetter
The SendHTMLPinGridLetter function sends an HTML formatted "PINgrid welcome letter" to
the user through email from the MyID server providing details of how to use the account. The
email is sent to the email address specified on the user account only.

You must specify the MIP here, as it cannot be retrieved from the user account in plain text.
Call this function immediately after calling the PinGridChangeMIP or PinGridProvision
functions while the MIP is still in memory as plain text.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name that is resolvable
in the directory.

templateName string PINgridUserTemplate The name of the HTML template file to
be used as a base for the email. You
can specify the file name with or without
the HTML file extension. The file must
be available in the MyID MFA Program
Files folder.

MIP string 23,29,35,24,30,36 A comma separated list of numbers
denoting the positions in a grid for the
pattern.

3.3.54 Function: SendHTMLPinPassLetter
The SendHTMLPinPassLetter functions sends an HTML formatted "PINpass welcome letter"
to the user through email from the MyID server providing details of how to use the account.
The email is sent to the email address specified on the user account only.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name that is resolvable
in the directory.

templateName string PINpassUserTemplate The name of the HTML template file to
be used as a base for the email. The file
name can be specified with or without
the HTML file extension. The file must
be available in the MyID MFA Program
Files folder.

MyID Authentication Server Developers Guide Page 38 of 56

3.3.55 Function: SendHTMLPinPhraseLetter
The SendHTMLPinPhraseLetterfunction sends an HTML formatted "PINphrase welcome
letter" to the user through email from the MyID server providing details of how to use the
account. The email is sent to the email address specified on the user account only.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name which is
resolvable in the directory.

templateName string PINphraseUserTemplate The name of the HTML template file
to be used as a base for the email.
The file name can be specified with
or without the HTML file extension.
The file must be available in the MyID
MFA Program Files folder.

3.3.56 Function: SendHTMLPushLetter
The SendHTMLPushLetter function sends an HTML formatted "Push MFA welcome letter" to
the user through email from the MyID server providing details of how to use the account. The
email is sent to the email address specified on the user account only.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name which is
resolvable in the directory.

templateName string PINphraseUserTemplate The name of the HTML template file
to be used as a base for the email.
The file name can be specified with
or without the HTML file extension.
The file must be available in the MyID
MFA Program Files folder.

3.3.57 Function: SendRealtimeToken
The SendRealtimeToken function sends a server-generated real-time token to the user
based on the configured authentication provider only if they are configured for Real-Time
token use. The token may be sent through email or text messaging depending on the user
settings.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name which is resolvable in the
directory.

MyID Authentication Server Developers Guide Page 39 of 56

3.3.58 Function: SendRealtimeTokenbyProduct
The SendRealtimeTokenbyProduct function sends a server-generated real-time token to
the user only if they are configured for Real-Time token use. The token may be sent through
email or text messaging depending on the user settings.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name which is resolvable in the
directory.

Product enum PinGrid Specify the type of authentication technology
to send a token for.

Valid values for the product parameter include:
PinGrid, PinPhrase, PinPass

3.3.59 Function: SendToken
The SendToken function sends a server-generated token to the user based on the configured
authentication provider and queue type (Real-Time / Pre-Send). The token may be sent
through email or text messaging depending on the user settings.

Ideally, call this function when a user is configured to use a pre-send token and the initial
tokens need to be delivered.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name which is resolvable in the
directory.

3.3.60 Function: SetADpassword
The SetADpassword function updates the Active Directory Domain account password for a
user account. The actual user or a MyID Administrator can call this function.

This function results in a password reset event on the Active Directory and not a password
change event.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name which is resolvable in the
directory.

ADpassword string Pa55w0rd The new Active Directory password to be
written to the Windows Domain.

MyID Authentication Server Developers Guide Page 40 of 56

3.3.61 Function: SetSettingsProperty
The SetSettingsProperty function commits the values of various global settings properties.
This is a write-only function; to get the value of a property, use the GetSettingsProperty
function.

You can set multiple values at the same time by specifying all the required properties and
values in the corresponding CSV string.

Parameter Type Value Sample Description
Names string SMTPServer1,

SMTPPort1
The property names to access. Note: Leaving
this value blank returns a list of supported
property values.

Values string mail.server.com,

25
The values to write to the properties specified
in names.

Valid values for the Names parameter that require Admin rights:
ToleranceLevel, TolerancePeriod, LockoutDuration, LockoutThreshold,

LockoutReset, SspAllowResetAdPassword,

SspUnlockMasterAccountOnPasswordReset, SspAllowUpdateMobilePhoneNumber,

SspAllowTokenDeviceChange, SspUrl, SspDevicelessMfa, SspPasswordReset,

SspLogonTechnology, WmpDevicelessMfa, WmpLogonTechnology, AppLogoUrl,

AppLogoDescription, AppEnableBiometrics, AppOtpCopyPaste,

AppTransactionValidation, AuthlogicsServerCertificate,

AuthlogicsIdpSigningCertificate, AuthlogicsServerTrustedRootCertificate,

ADUsernameCustomAttribute, RandomiseAdPasswordPeriod,

RandomiseAdPasswordEnforced, GUIDAdministrators, GUIDOperators,

GUIDAdministrators, GUIDServers, GUIDRadius, GUIDADPassthrough,

SMTPServer1, SMTPServer2, SMTPPort1, SMTPPort2, SMTPFromAddress,

SMTPEnableSSL, SMTPUseWindowsCredentials, SMTPUsername, SMTPPassword,

SMSSendLimit, SMSDefaultCountryCode, RealTimeTokenLifespan,

AllowEmergencyOverride, AllowTemporaryAccessCode, MaxOverrideTime,

MaxOverrideUses, PasswordVaultEnabled, RequirePrivateMobile, EmailDomains,

AccountBreachedAction, AccountSharedAction, AccountMfaDormantAction,

AccountAdDormantAction, AlertBreachPassword, AlertDormantAdDays,

AlertDormantMfaDays, AlertLicenceEvents, AlertMfaAccountLockedOut,

AlertMfaDeviceChangeOnAccount, AlertMfaDormant, AlertSharedPassword,

PsmScheduleRepeatCycle, PsmScheduleRecur, PinGridMatrixMinNumberOfSquares,

PinGridMatrixTheme, PinGridMIPHistory, PinGridMIPMaxAge,

PinGridMIPMinLength, PinGridMIPMinAge, PinGridMIPComplexity,

PinGridMIPMaxAdjacencies, PinGridMIPMaxCellRepeats, PinGridHASHLevel,

PinGridMessagePrefix, PinGridMatrixFontSize, PinGridMatrixColourQ1,

PinGridMatrixColourQ2, PinGridMatrixColourQ3, PinGridMatrixColourQ4,

PinGridMatrixBitmapSizeDPI, PinGridMatrixHTMLEmail,

PinPhraseMinNumberOfQuestions, PinPhraseMinAnswerLength,

PinPhraseMessagePrefix, PinPhraseUseMultipleQuestionsPerLogin,

PinPassMessagePrefix, PinPassMinLength, PinPassPINMinLength,

MyID Authentication Server Developers Guide Page 41 of 56

PinPassPINPosition, PinPassPINEnforced, RADIUSFilterEnabled,

ADPassthroughEnabled , YubiKeyOtpPinMinLength, YubiKeyOtpPinEnforced,

YubiKeyOtpEnabled, YubiKeyOtpOnlineEnabled.

3.3.62 Function: SetUserProperty
The SetUserProperty function commits the values of various user account properties. This
is a write-only function; to get the value of a property, use the GetUserProperty function.

You can set multiple values at the same time by specifying all the required properties and
values in the corresponding CSV string.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name which is
resolvable in the directory.

Names string FirstName,LastName The property names to access.

Note: Leaving this value blank returns a
list of supported property values.

Values string John,Smith The values to write to the properties
specified in names.

Valid values for the Names parameter that require Admin or Operator rights:
LockedOut, Enabled, UserCannotChangePasswordAD, PasswordNeverExpiresAD,

PasswordLastSetAD, MailAddress, ValidFrom, ValidTo, RequireBiometrics,

PinGridMIPMustChange, PinGridMIPNeverExpires, PinGridRequire2FA,

PinGridEnable2FA, PinGridTokenLifespan, PinGridDelivery, PinGridQueueType,

PinPhraseAnswersMustChange, PinPhraseCodeLength, PinPhraseRequire2FA,

PinPhraseEnable2FA, PinPhraseTokenLifespan, PinPhraseDelivery,

PinPhraseQueueType, PinPassPINMustChange, PinPassCodeLength,

PinPassPINisADpassword, PinPassTokenLifespan, PinPassDelivery,

PinPassQueueType, PinPassTokensPerMessage, YubiKeyOtpPinMustChange,

YubiKeyOtpPinisADpassword.

Valid values for the Names parameter that require Admin or Operator rights, or can be
accessed by the actual user:
MobileNumber, MobilePrivate, PinGridMIP, PinPassPIN, PinPhraseAnswers,

YubiKeyOtpPin.

Valid values for the Names parameter which require Admin rights:
FirstName, LastName, Description, UPN.

Valid values for the Names parameter which require Admin, Operator or Enterprise Domain
Controller rights:
PasswordLengthAD.

Note: You can set the value of LockedOut to False to unlock an account; however, you
cannot set LockedOut to Truemanually.

MyID Authentication Server Developers Guide Page 42 of 56

3.3.63 Function: SyncDevice
The SyncDevice function sets a device to the status that requires it to synchronize its
settings.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name which is resolvable
in the directory.

deviceID string 2419216713157481 The device ID of as indicated by the
Authenticator App.

3.3.64 Function: TokenHardwareAdd
The TokenHardwareAdd function adds hardware token details to a user account.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name which is
resolvable in the directory.

Enabled Boolean True Set the enabled status of the new token.
Typically set to True for a new device.

tokenType enum WindowsPhone The platform on which the soft token is
installed.

tokenID string 2419216713157481 The hardware / device ID of the
hardware token as indicated by the
Authenticator App.

Valid values for the tokenType parameter include:
WindowsDesktop, WindowsStore, WindowsPhone, Android, AppleiOS, AppleMacOS,

BlackBerry, Yubikey.

3.3.65 Function: TokenHardwareEnabled
The TokenHardwareEnabled function allows you to enable or disable individual tokens on a
user account.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name which is
resolvable in the directory.

Enabled Boolean True The new enabled status of the token.
tokenID string 2419216713157481 The hardware / device ID of the token as

indicated by the soft token application.

3.3.66 Function: TokenHardwareRemove
The TokenHardwareRemove function removes individual tokens from a user account.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name which is resolvable in
the directory.

tokenID string 2419216713157481 The hardware / device ID of the token as
indicated by the soft token application.

MyID Authentication Server Developers Guide Page 43 of 56

3.3.67 Function: UpdateFidoCredential
The UpdateFidoCredential function updates a Fido credential for the user account.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name which is
resolvable in the directory.

credential FidoCredential See section 3.4,
Data types.

A representation of a
FidoCredential

3.3.68 Function: UpdateLicenceFile
The UpdateLicenceFile function updates the license file information on the MyID MFA
Server with the XML data provided. The XML must be baes64/URL encoded before
submitting to the Web API. Online and offline license files are supported, and online licenses
are activated.

Parameter Type Value Sample Description
base64licenceXml string A base64 encoded license file.

3.3.69 Function: UpdateLicenceKey
The UpdateLicenceKey function updates the license key information on the MyID MFA
Server with the license key provided. Only online licenses are supported and are activated.

Parameter Type Value Sample Description
licenceKey string A license key.

3.3.70 Function: ValidateAdPassword
The ValidateAdPassword function tests a user's Active Directory password against the
supplied user's accountname.

The function returns a True or False Boolean value.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp

andyp@sample.com

An Active Directory user account name
against which to test the password.

password string Pa55w0rd The user's Active Directory password to
test.

3.3.71 Function: VerifyEmergencyAccess
The VerifyEmergencyAccess function verifies an emergency access pass code is valid.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp

andyp@sample.com

A user account name which is resolvable
in the directory.

passcode string 123456 A passcode to authenticate the account.

MyID Authentication Server Developers Guide Page 44 of 56

3.3.72 Function: VerifyTransaction
The VerifyTransaction function processes a three-factor logon request for a user account.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp

andyp@sample.com

A user account name which is
resolvable in the directory.

passcode string 123456 A passcode to authenticate the
account.

transactionData string Abcd1234 Transaction string being used as part
of the signing process.

Much like the AuthenticateUser function, this function returns an integer code indicating the
result of the VerifyTransaction request.

0 Access Granted. Credentials are valid.
1 Access Denied. Account name not found.
2 Access Denied. Invalid passcode.
5 Access Denied. Account Expired.
7 Access Denied. Account disabled, locked out, or not valid at this time.
8 Access Denied. Authentication not available due to a licensing issue.
13 Access Granted. A pattern change is required.
111 Access Denied. Directory related error.

3.3.73 Function: YubiKeyOtpChangePin
The YubiKeyOtpChangePin function changes the PIN on a YubiKey.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name which is resolvable in the
directory.

pin string 7651 A PIN (or password) to be used as the
knowledge component for authentication.

currentPin string 5976 The current PIN for the YubiKey

MyID Authentication Server Developers Guide Page 45 of 56

3.3.74 Function: YubiKeyOtpProvision
The YubiKeyOtpProvision function provisions a user account for a user with YubiKey OTP.
You must do this at least once to allow YubiKey OTP to be used with the account.

Parameter Type Value Sample Description
accountName string AndyP

domain\andyp
A user account name which is resolvable
in the directory.

PIN string 7651 A PIN (or password) to be used as the
knowledge component for authentication.
If you do not specify a PIN, a random PIN
is generated and saved to the account.

PINisADpassword Boolean False Use the Active Directory password
instead of a PIN. If this value is set to
True, the PIN value, if specified, is not
used.

Note: This option is available only in an
Active Directory environment.

MyID Authentication Server Developers Guide Page 46 of 56

3.4 Data types
3.4.1 FidoCredential

{
"aaGuid": "3fa85f64-5717-4562-b3fc-2c963f66afa6",
"attestationClientDataJson": "string",
"attestationObject": "string",
"be": true,
"bs": true,
"credentialType": 0,
"credType": "string",
"descriptor": {
"id": "string",
"transports": [

0
],

"type": 0
 },

"devicePublicKeys": [
"string"

],
"enabled": true,
"encryptedPassword": "string",
"hmacSalt": "string",
"id": "string",
"lastUsed": "2024-02-13T10:33:37.599Z",
"name": "string",
"publicKey": "string",
"regDate": "2024-02-13T10:33:37.599Z",
"signCount": 0,
"transports": [
0

],
"type": 0,
"userHandle": "string",
"userId": "string"

}

MyID Authentication Server Developers Guide Page 47 of 56

3.5 Example: programmatically creating a user account
The following example uses a user's email address as the basis for creating a new account. It
uses the email address suffix as a realm name in which to create the account.

Next, a random Grid pattern (MIP) is generated and used to provision the user for Grid
patterns.

Finally, the user is sent a welcome email containing their new pattern.

3.5.1 Process flow

MyID Authentication Server Developers Guide Page 48 of 56

3.5.2 Explanation
Note: All API requests expect their relevant parameters to be passed in the request for them
to function correctly – refer to the API reference for this if necessary.

1. Retrieve the credentials using the method described before, and then assign them
accordingly.

If you are using a service reference, you can assign this to this object instance
credentials, and it applies for each request. If you are using a standard web request, this
is used for each request, setting them with the NetworkCredential object as previously
described.

2. Make a request to CreateUser to create the user account.

3. Set any additional user properties as needed by calling the SetUserProperty function.

This function accepts a comma-separated list of properties, and a comma-separated list
of values, so you can apply many attributes to a user at any one time.

4. When calling the PinGridGenerateMIP function, you are recommended to store the
result in a variable.

You can then use this in the next API call to provision the user. You can make the MIP as
complicated as you need it to be, and this depends on your requirements for pattern
complexity.

5. Call the PinGridProvision function to provision the user for a Grid pattern.

Use the stored value for the MIP. When adding parameters for the provision API call, the
default value for a grid size is 6 – that is, a 6x6 grid.

6. Call the SendHTMLPinGridLetter to send the welcome email to the user.

Use the stored value for the MIP. When adding parameters for sending the HTML letter to
the user, the templateName string value is the default value of the Grid template; that is,
PINgridUserTemplate.

For a PINpass letter, this is instead PINpassUserTemplate; for PINphrase, the value
PINphraseUserTemplate.

MyID Authentication Server Developers Guide Page 49 of 56

3.6 Using the Web Services API with Visual Studio
In addition to using HTTPS GET and POST to communicate with the API, you can use the
Authlogics.ApiClient .NET library.

The library is .NET Standard, so works with both .NET Framework and .NET Core.

3.6.1 AuthlogicsApiClient
To create the client, you can either explicitly pass it the server URI; for example:

new AuthlogicsApiClient(new Uri("https://myserver.com:14443"));

Or you can pass in an IConfiguration instance; for example:

var client = new AuthlogicsApiClient(configuration);

Which you can also configure through DI; for example:

using IHost host = Host
 .CreateDefaultBuilder(args)
 .ConfigureServices(services => services.AddTransient<IAuthlogicsApiClient,
AuthlogicsApiClient>())
 .Build();

var client = host.Services.GetRequiredService<IAuthlogicsApiClient>();

With the appsettings.json in the format:

{
"Authlogics": {
"ApiClient": {

"ServerUrl": "https://myserver.com:14443"
 }
 }
}

You can also optionally set a an ILogger instance, which, if set, logs the details of each
method call; for example:

client.Logger = logger;

Once you have created the client instance, you can call TestConnection to verify that the
client can access the server using the URI provided. This calls an un-authenticated method
on the server so it can verify the URI independently of any authentication issues that may
arise. There is no return value, the test throws an exception if the connection fails; for
example:

await client.TestConnection(cancellationToken);

MyID Authentication Server Developers Guide Page 50 of 56

3.6.2 Authentication
You require a JWT bearer token to access the API. If you have already generated a bearer
token, you can pass it directly into the client; for example:

await client.AuthenticateWithBearerToken("...", cancellationToken);

You can also authenticate with a client credential along with the scope; for example:

await client.AuthenticateWithClientCredentials("my_client_credential", " my_client_
credential_secret", "rest_api", cancellationToken);

For more information on creating a client credential, see the Creating a client credential
application section in theMyID Authentication Server Installation and Configuration
Guide.
In each case, the bearer token received or generated is stored in the client and automatically
included with every method call that requires authentication.

3.6.3 Example
The following example checks for an existing realm, creates it if it does not exist, then returns
all realms.

if (!await client.DoesRealmExists("MyTestRealm", cancellationToken))
{

await client.CreateRealm("MyTestRealm", cancellationToken);
}

var realms = await client.GetRealms("", cancellationToken);

3.7 Web Service call changes in version 5.0 from 4.2.1
The following table lists the Web Service API calls that have been added and removed in
MyID MFA Version 5.

Added Removed
AddFidoCredential WebPortalVerifyOTP

EnableFidoCredential

GetOathUrl

RemoveFidoCredential

UpdateFidoCredential

VerifyEmergencyAccess

YubiKeyOtpChangePin

YubiKeyOtpProvision

MyID Authentication Server Installation and Configuration Guide.pdf
MyID Authentication Server Installation and Configuration Guide.pdf

MyID Authentication Server Developers Guide Page 51 of 56

4 Advanced configuration
You can control the advanced configuration options for MyID MFA through the Windows
registry or the IIS web.config file. The entries described in this chapter are created during
the installation of MyID server components; typically, you should change them only if
instructed by an Intercede support engineer.

Note: After changing a registry key on the MyID Server, you must restart the IIS components;
to do so, open aWindows command prompt with administrative permissions and run the
following command:
iisreset

You can:

• Specify Active Directory Domain Controllers.

See section 4.1, Specifying Active Directory Domain Controllers.

• Configure the connection timeout for Active Directory.

See section 4.2, Active Directory timing.

• Configure diagnostics logging.

See section 4.3, Diagnostics logging.

• View other settings.

See section 4.4,Other settings.

MyID Authentication Server Developers Guide Page 52 of 56

4.1 Specifying Active Directory Domain Controllers
The MyID Authentication Server automatically locates Domain Controllers as needed. In
environments where network segmentation exists, the MyID Authentication Server may not
be able to contact all Domain Controllers. This can cause connectivity problems and logon
delays.

In these environments, you can specify which Domain Controllers and Global Catalog
Servers should be used using registry keys. Each key can contain one or many server names
(FQDN recommended) separated by commas.

4.1.1 Specifying Global Catalog Servers
To specify the global catalog server to access from the MyID Authentication Server, set the
following registry value:
HKLM\SOFTWARE\Authlogics\Authentication Server\DomainGCs

By default, this is blank.

Accepted values:

• One or more server names (FQDN recommended), separated by commas.

Used by components: MyID Authentication Server; Management Console

The MyID Authentication Server attempts to connect to each specified global catalog server
and then remains connected to the server that responds to LDAP queries the quickest.

Note: This setting disables the auto-detect global catalog servers functionality within MyID.

4.1.2 Specifying Domain Controllers
To specify the Domain Controllers to access from the MyID Authentication Server, set the
following registry value:
HKLM\SOFTWARE\Authlogics\Authentication Server\DomainDCs

By default, this is blank.

Accepted values:

• One or more Domain Controller names (FQDN recommended), separated by commas.

Used by components: MyID Authentication Server; Management Console

The MyID Authentication Server attempts to connect to each specified Domain Controller and
then remains connected to the server that responds to LDAP queries the quickest. The MyID
Authentication Server initially finds the names of all the Domains in the Forest, and the
Domain Controllers in each Domain by querying the Global Catalog. It then maps the results
against the Domain Controllers list in the registry to calculate which server to use for each
Domain. If a Domain does not have a Domain Controllers specified, one is selected
automatically.

Note: This setting disables the auto-detect Domain Controller functionality within MyID.

4.2 Active Directory timing
You can set the following values in the registry:

• Domain access timeout.

• Domain controller refresh.

MyID Authentication Server Developers Guide Page 53 of 56

4.2.1 Domain access timeout
HKLM\SOFTWARE\Authlogics\Authentication Server\DomainAccessTimeout

Default value: 60

Accepted values:

• 0 – disabled, indefinite timeout.

• 1 to 120 – timeout in seconds.

The time taken in seconds before a connection established by a MyID component to a
Domain Controller times out.

4.2.2 Domain Controller refresh
HKLM\SOFTWARE\Authlogics\Authentication Server\DomainControllerRefeshTime

Default value: 15

Accepted values:

• 1 to 9999 – timeout in minutes.

The time taken in minutes before a new search is done to locate the quickest Global Catalog
Server and Domain Controller.

4.3 Diagnostics logging
You can control the diagnostics logging using the Windows registry.

4.3.1 Enabling logging
To enable or disable diagnostics logging, set the following registry value:
HKLM\SOFTWARE\Authlogics\Authentication Server\LoggingEnabled

The default value is 0.

Accepted values:

• 0 – disabled.

• 1 – enabled.

When you enable this value, various log files are created in the logging folder. Intercede
support may request these logs from you.

4.3.2 Setting the logging location
To control the location of the log files, set the following registry value:
HKLM\SOFTWARE\Authlogics\Authentication Server\LoggingFolder

The default value is:
C:\Program Files\Authlogics Authentication Server\Log\

Accepted values:

• Any valid local folder with the same NTFS permissions as the default folder.

MyID Authentication Server Developers Guide Page 54 of 56

4.3.3 Setting the retention time for rolling logs
Old logs are deleted after a specified interval has passed; for example, after three days
(which is the default), or two months. You specify this retention time using the interval type
(LoggingRollingIntervalType) – for example, days or months, and the number of intervals
(LoggingFileCountLimit) – for example, three (days) or two (months).

To set the interval type, set the following registry value:
HKLM\SOFTWARE\Authlogics\Authentication Server\LoggingRollingIntervalType

The default value is 3 (days).

Accepted values:

• 0 – Infinite time between rolling logs – this means that old logs are never deleted.

• 1 – Years.

• 2 – Months.

• 3 – Days.

• 4 – Hours.

• 5 – Minutes.

This setting also determines when new logs are created; for example, new logs are created
every day, or every year. Multiple logs may be created within each interval depending on the
size limit you have set for the logs; see section 4.3.4, Size limit of rolling log files.

To set the number of intervals of logs stored, for example, three (days) or two (months), set
the following registry value:
HKLM\SOFTWARE\Authlogics\Authentication Server\LoggingFileCountLimit

The default value is 3 – after three intervals, the logs from the first interval are deleted.

Accepted values:

• A number of intervals.

MyID Authentication Server Developers Guide Page 55 of 56

4.3.4 Size limit of rolling log files
New log files are created every interval (for example, every day, or every month). To prevent
these files from becoming too large, you can set the maximum size of each log file. When this
size is reached, a new log file is created within the same interval; for example, if you are using
day interval logs:
AuthlogicsIdentityServer-20250325-0001.log

AuthlogicsIdentityServer-20250325-0002.log

or for year interval logs:
AuthlogicsIdentityServer-2025-0001.log

AuthlogicsIdentityServer-2025-0002.log

To set the maximum size of each log file, set the following registry value:
HKLM\SOFTWARE\Authlogics\Authentication Server\LoggingRollingSizeLimit

The default value is 20 megabytes.

Accepted values:

• A number in megabytes.

Note: This setting does not reduce the total size of the logs; by limiting the size of the
individual files, it increases the number of files.

MyID Authentication Server Developers Guide Page 56 of 56

4.3.5 Example of rolling logs
With the default values of:

• LoggingRollingIntervalType – 3 (day intervals)

• LoggingFileCountLimit – 3 (three days)

• LoggingRollingSizeLimit – 20 (MB)

Old log files are deleted after three days.

An example of rolling log files produced starting on the March 25th 2025 is:
AuthlogicsIdentityServer-20250325-0001.log

AuthlogicsIdentityServer-20250325-0002.log

AuthlogicsIdentityServer-20250326-0001.log

AuthlogicsIdentityServer-20250326-0002.log

AuthlogicsIdentityServer-20250326-0003.log

AuthlogicsIdentityServer-20250327-0001.log

AuthlogicsIdentityServer-20250327-0002.log

AuthlogicsRestApi-20250325-0001.log

AuthlogicsRestApi-20250325-0002.log

AuthlogicsRestApi-20250326-0001.log

AuthlogicsRestApi-20250326-0002.log

AuthlogicsRestApi-20250326-0003.log

AuthlogicsRestApi-20250327-0001.log

AuthlogicsRestApi-20250327-0002.log

Each day has several files, each with a maximum size of 20 megabytes. When the logger
starts writing to the first file of March 28th, the cleanup process is triggered, deleting the files
from March 25th, as those are then more than three days old.

4.4 Other settings
The following setting is provided for information:

4.4.1 ProgramFolder
The program folder is specified in the following registry value:
HKLM\SOFTWARE\Authlogics\Authentication Server\ProgramFolder

The default value is:
C:\Program Files\Authlogics Authentication Server

Important: Changing this value is not supported.

	MyID Authentication Server Developers Guide
	Copyright
	Conventions used in this document
	Contents
	1 Introduction
	1.1 Guidance

	2 Web services communication
	2.1 Authentication and transaction verification
	2.1.1 AuthenticateUser
	2.1.2 VerifyTransaction
	2.1.3 Return codes

	2.2 Challenge Grid generation
	2.2.1 accountname
	2.2.2 format
	2.2.3 resolution
	2.2.4 background

	2.3 Phrase Challenge generation
	2.3.1 accountname

	2.4 One Time Code Challenge triggering
	2.5 Identity Provider

	3 Web Services API
	3.1 Authentication to the WSAPI
	3.2 WSAPI function list
	3.3 WSAPI function details
	3.3.1 Function: AddFidoCredential
	3.3.2 Function: AuthenticateUser
	3.3.3 Function: ChangeADpassword
	3.3.4 Function: CheckPasswordAgainstPolicy
	3.3.5 Function: CreateRealm
	3.3.6 Function: CreateUser
	3.3.7 Function: CreateUserExternal
	3.3.8 Function: DeleteRealm
	3.3.9 Function: DeleteUser
	3.3.10 Function: DisableEmergencyOverride
	3.3.11 Function: DisablePinGrid
	3.3.12 Function: DisablePinPass
	3.3.13 Function: DisablePinPhrase
	3.3.14 Function: DisablePush
	3.3.15 Function: DomainExists
	3.3.16 Function: EnableEmergencyOverride
	3.3.17 Function: EnableFidoCredential
	3.3.18 Function: EnablePinGrid
	3.3.19 Function: EnablePinPass
	3.3.20 Function: EnablePinPhrase
	3.3.21 Function: EnablePush
	3.3.22 Function: GenerateNewUserSeed
	3.3.23 Function: GetAuthlogicsUsers
	3.3.24 Function: GetPasswordPolicySettings
	3.3.25 Function: GetDomains
	3.3.26 Function: GetFullProvisionedUsers
	3.3.27 Function: GetOathUrl
	3.3.28 Function: GetRealms
	3.3.29 Function: GetRealmsAt
	3.3.30 Function: GetRealmsInfo
	3.3.31 Function: GetSecurityKey
	3.3.32 Function: GetServerVersion
	3.3.33 Function: GetMinimumClientVersion
	3.3.34 Function: GetSettingsProperty
	3.3.35 Function: GetUserProperty
	3.3.36 Function: IsRealmEmpty
	3.3.37 Function: PasswordHashExists
	3.3.38 Function: PinGridChangeMIP
	3.3.39 Function: PinGridGenerateMIP
	3.3.40 Function: PinGridProvision
	3.3.41 Function: PinPassChangePin
	3.3.42 Function: PinPassGeneratePIN
	3.3.43 Function: PinPassProvision
	3.3.44 Function: PinPhraseAddQuestion
	3.3.45 Function: PinPhraseEditQuestion
	3.3.46 Function: PinPhraseGenerateCodeword
	3.3.47 Function: PinPhraseProvision
	3.3.48 Function: PinPhraseRemoveQuestion
	3.3.49 Function: RealmExists
	3.3.50 Function: RemoveFidoCredential
	3.3.51 Function: RenameRealm
	3.3.52 Function: RenameUser
	3.3.53 Function: SendHTMLPinGridLetter
	3.3.54 Function: SendHTMLPinPassLetter
	3.3.55 Function: SendHTMLPinPhraseLetter
	3.3.56 Function: SendHTMLPushLetter
	3.3.57 Function: SendRealtimeToken
	3.3.58 Function: SendRealtimeTokenbyProduct
	3.3.59 Function: SendToken
	3.3.60 Function: SetADpassword
	3.3.61 Function: SetSettingsProperty
	3.3.62 Function: SetUserProperty
	3.3.63 Function: SyncDevice
	3.3.64 Function: TokenHardwareAdd
	3.3.65 Function: TokenHardwareEnabled
	3.3.66 Function: TokenHardwareRemove
	3.3.67 Function: UpdateFidoCredential
	3.3.68 Function: UpdateLicenceFile
	3.3.69 Function: UpdateLicenceKey
	3.3.70 Function: ValidateAdPassword
	3.3.71 Function: VerifyEmergencyAccess
	3.3.72 Function: VerifyTransaction
	3.3.73 Function: YubiKeyOtpChangePin
	3.3.74 Function: YubiKeyOtpProvision

	3.4 Data types
	3.4.1 FidoCredential

	3.5 Example: programmatically creating a user account
	3.5.1 Process flow
	3.5.2 Explanation

	3.6 Using the Web Services API with Visual Studio
	3.6.1 AuthlogicsApiClient
	3.6.2 Authentication
	3.6.3 Example

	3.7 Web Service call changes in version 5.0 from 4.2.1

	4 Advanced configuration
	4.1 Specifying Active Directory Domain Controllers
	4.1.1 Specifying Global Catalog Servers
	4.1.2 Specifying Domain Controllers

	4.2 Active Directory timing
	4.2.1 Domain access timeout
	4.2.2 Domain Controller refresh

	4.3 Diagnostics logging
	4.3.1 Enabling logging
	4.3.2 Setting the logging location
	4.3.3 Setting the retention time for rolling logs
	4.3.4 Size limit of rolling log files
	4.3.5 Example of rolling logs

	4.4 Other settings
	4.4.1 ProgramFolder

